Measuring risk at places

Prof. Martin A. Andresen School of Criminology, Simon Fraser University andresen@sfu.ca https://martinxandresen.wordpress.com/

A little about me...

Professor, School of Criminology, Simon Fraser University

Background in economics and (human) geography

Spent the better part of the last 3 years in Gold Coast, Australia

https://martinxandresen.wordpress.com/

What we're going to go over today

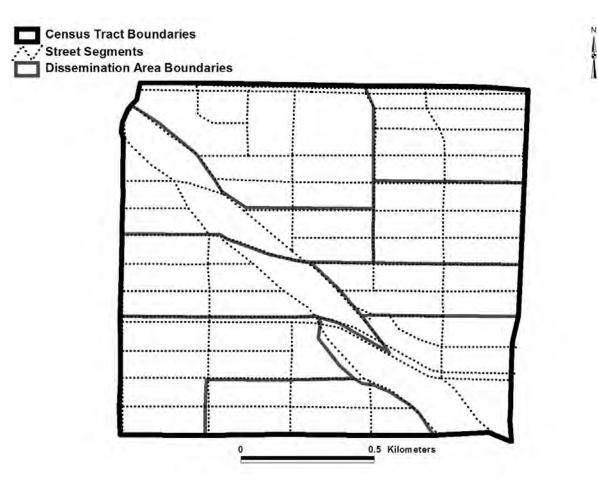
This will be "old hat" for some people here

But these are important issues that should not be given a nod and forgotten

Spatial scale and its implications

Data sources for measuring risk (better)

Measures of risk


Considerations of scale

- Spatial criminology
 - Been moving to smaller and smaller units of analysis for 200 years
- Does not mean that larger units of analysis are not instructive
- Data limitations often dictate the spatial unit of analysis
 - Confidentiality, or just availability
- But scale matters a lot

	Percentage of spatial units accounting for 50 % of crime		Percentage of spatial units that have any crime			Percentage of spatial units with any crime that account for 50 % of crime						
	1991	1996	2001	2006	1991	1996	2001	2006	1991	1996	2001	2006
Assault	1.59	1.50	1.24	1.08	16.89	16.48	13.40	13.92	9.40	9.08	9.27	7.75
Burglary	5.37	5.61	5.11	4.42	31.27	33.97	26.42	20.94	17.16	16.52	19.33	21.12
Other	0.19	0.51	0.33	0.85	5.93	4.46	3.85	6.49	3.20	11.44	8.58	13.11
Robbery	1.02	1.19	0.92	1.09	7.11	8.33	4.01	5.04	14.42	14.25	22.84	21.64
Theft from vehicle	3.81	2.42	2.14	2.81	33.87	33.65	25.76	23.29	11.25	7.20	8.29	12.06
Theft	2.30	2.08	1.31	1.06	27.56	28.63	18.49	15.53	8.34	7.25	7.07	6.81
Theft of vehicle	4.19	5.03	4.54	3.91	17.06	22.50	18.78	14.10	24.57	22.34	24.16	27.77
Total	4.35	4.04	3.55	3.25	52.79	55.04	47.13	43.72	8.25	7.34	7.53	7.44
<u>\</u>												

 Table 3 Percentage of street segments and intersections accounting for 50 % of crime

Scale in a Canadian context

	1991-1996	1996-2001	1991-2001
Assault	.346	.318	.300
Burglary	.173	.218	.155
Robbery	.282	.364	.327
Sexual assault	.455	.409	.509
Theft	.199	.218	.136
Theft of vehicle	.282	.227	.300
Theft from vehicle	.091	.218	.146

Table 4. Indices of Similarity, Census Tracts

Table 5. Indices of Similarity, Dissemination Areas

	1991-1996	1996-2001	1991-2001
	1771-1770	1770-2001	1771-2001
Assault	.365	.357	.335
Burglary	.284	.288	.299
Robbery	.624	.675	.662
Sexual assault	.715	.753	.691
Theft	.377	.271	.237
Theft of vehicle	.313	.332	.332
Theft from vehicle	.224	.332	.261

Table 6. Indices of Similarity, Street Segments

	1991-1996	1996-2001	1991-2001
Assault	.659	.659	.659
Burglary	.537	.557	.567
Robbery	.866	.856	.875
Sexual assault	.920	.941	.919
Theft	.534	.559	.577
Theft of vehicle	.638	.577	.659
Theft from vehicle	.408	.445	.442

	1991-1996	1996-2001	1991-2001	Percentage of Census Tracts Retained
Assault	.321	.264	.274	96.4
Burglary	.149	.224	.140	97.3
Robbery	.238	.343	.286	95.5
Sexual assault	.438	.391	.476	95.5
Theft	.194	.213	.121	98.2
Theft of vehicle	.269	.250	.287	98.2
Theft from vehicle	.056	.222	.148	98.2

Table 7. Indices of Similarity, Nonzero Census Tracts

Table 8. Indices of Similarity, Nonzero Dissemination Areas

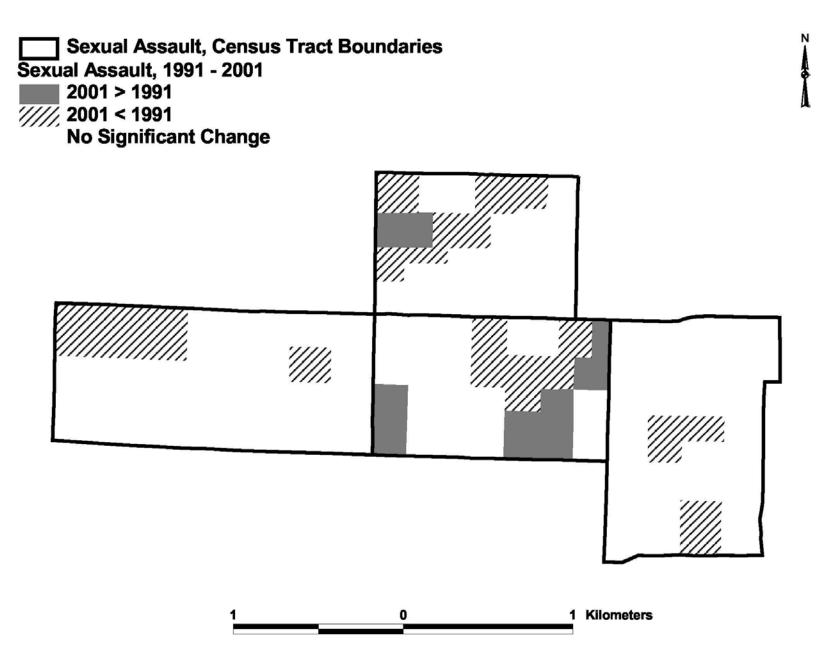

	1991-1996	1996-2001	1991-2001	Percentage of Dissemination Areas Retained
Assault	.321	.328	.294	94.2
Burglary	.257	.265	.279	96.8
Robbery	.399	.498	.458	63.1
Sexual assault	.509	.579	.471	57.6
Theft	.298	.253	.221	96.9
Theft of vehicle	.291	.298	.294	95.7
Theft from vehicle	.197	.311	.239	96.9

Table 9. Indices of Similarity, Nonzero Street Segments

	1991-1996	1996-2001	1991–2001	Percentage of Street Segments Retained
Assault	.340	.351	.326	38.2
Burglary	.327	.355	.372	63.8
Robbery	.387	.385	.427	12.7
Sexual assault	.518	.516	.501	9.4
Theft	.291	.343	.354	56.6
Theft of vehicle	.414	.325	.424	49.5
Theft from vehicle	.206	.326	.253	63.9

Ecological fallacy and MAUP

- Ecological fallacy
 - What is true of the whole is not necessarily true of its parts
- Atomistic fallacy
 - What is true of the part is not necessarily true of the whole
- Modifiable areal unit problem (MAUP)
 - What we have alluded to above
 - Change your spatial scale and your results can (drastically) change
 - Been fine in criminology (as far as we know), but anything can happen

|--|--|--|--|

A hot spot: to be or not to be?

Spatial scale and risk

In short...

- The scale you measure at impacts risk
- To paraphrase Sherman et al. (1989):
 - There are safe places in dangerous neighbourhoods and dangerous places in safe neighbourhoods
- Scale matters for the measurement of risk

Data sources for measuring risk

Census

• Based on where people live, not where they are

Social media (and other) data

• Great but have limitations (e.g. Twitter and OpenCellID)

Google Street View

• A lot of computing science people use these, but poorly

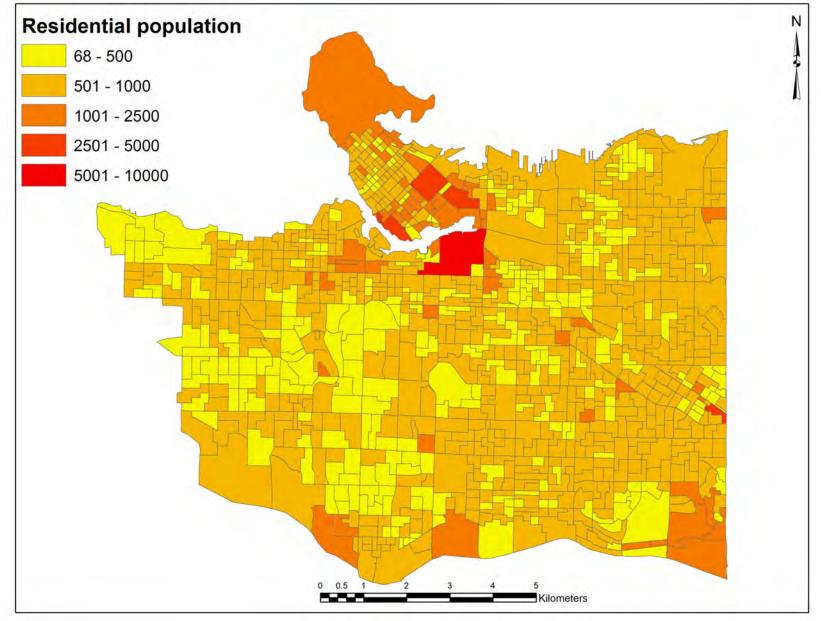
City websites

• Can be a valuable resource

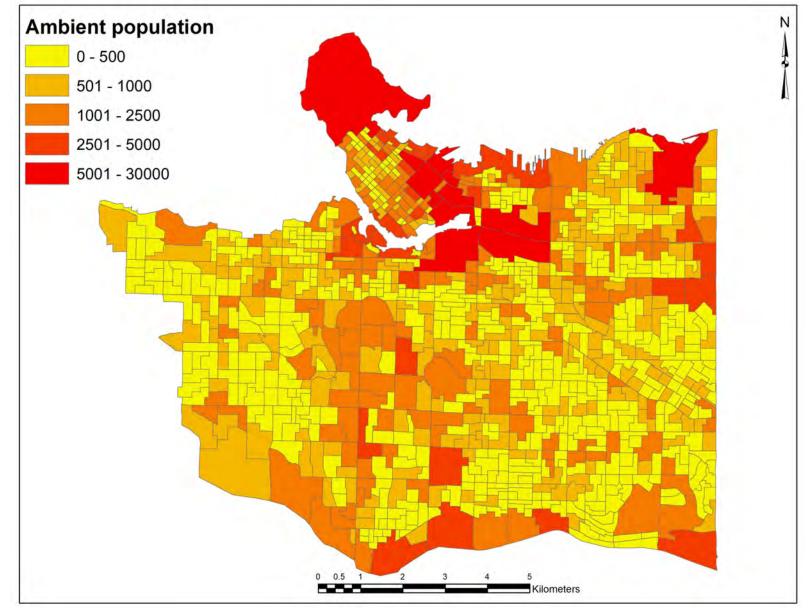
An example: Vancouver Open Data Catalogue

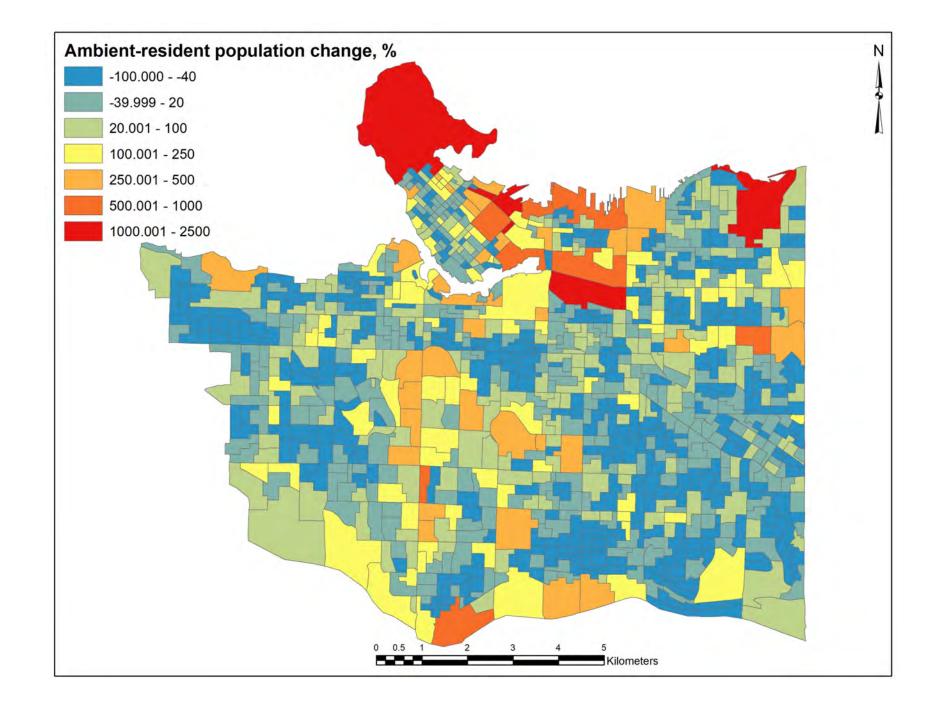
A criminological example

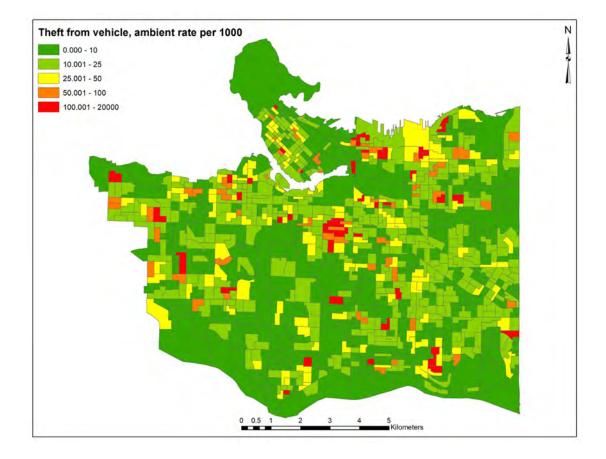
	Count (n)	Mean	Minimum	Maximum	SD
Residential burglary	2,140	0.23	0.00	8.00	0.60
Commercial burglary	2,689	0.21	0.00	23.00	0.90
Theft of vehicle	1,972	0.11	0.00	6.00	0.40
Theft from vehicle	12,372	0.98	0.00	116.00	3.90
Theft	13,475	0.44	0.00	276.00	6.22
Banks	144	0.01	0.00	4.00	0.14
Car parkades	318	0.02	0.00	4.00	0.19
Check-cashing stores	41	0.00	0.00	3.00	0.07
Community centres	27	0.00	0.00	1.00	0.05
Convenience stores	278	0.02	0.00	4.00	0.17
Gas stations	77	0.01	0.00	1.00	0.08
Liquor stores	100	0.01	0.00	3.00	0.10
Non-profit housing	232	0.02	0.00	5.00	0.17
Parks	222	0.02	0.00	2.00	0.13
Restaurants (Liquor)	1,225	0.09	0.00	11.00	0.54
Restaurants (No Liquor)	561	0.04	0.00	5.00	0.27
Schools	113	0.01	0.00	2.00	0.10
Apartments	2,746	0.24	0.00	32.00	1.09
Bus stops	1,790	0.14	0.00	6.00	0.45
Rental units (By-law)	372	0.03	0.00	5.00	0.21
Residential/commercial	232	0.02	0.00	5.00	0.15
Retail dealers	136	0.21	0.00	73.00	1.34
Second-Hand dealers	3,135	0.01	0.00	4.00	0.12
Skytrain stations	22	0.00	0.00	1.00	0.04
Streetlights	56,042	4.28	0.00	115.00	4.14
Central business district	619	0.05	0.00	1.00	0.21

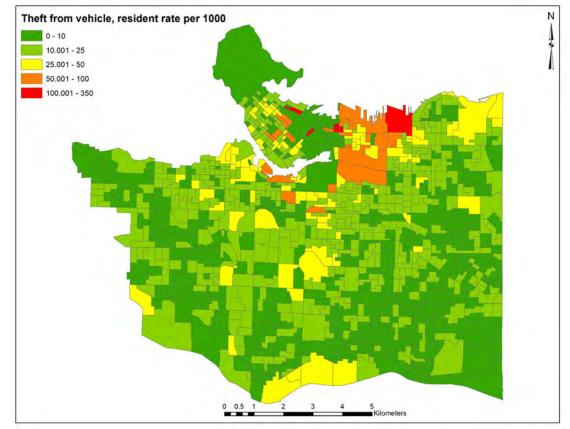

lssues to consider

- These are measured at the address level
- Can be a lot of work to gather, but worth the effort
- Community-level factors still matter...the neighbourhood is not dead!
 - Sorry John Eck!!
- Can include more standard socio-demographic/economic variables
 - Can consider multi-level models, as a number of people have


OpenCellID

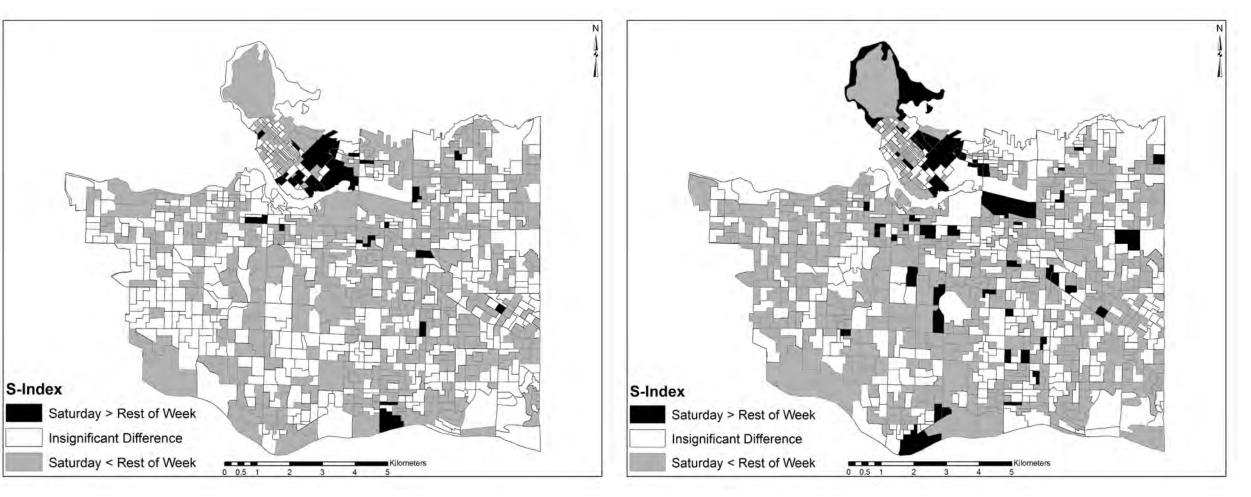

- What it is and what is isn't
- NOT call volume or mobile phone pinging measurement
- The count of cellular towers
- Why I think it is a good measure of the ambient population


Vancouver, 2016 (640,000)

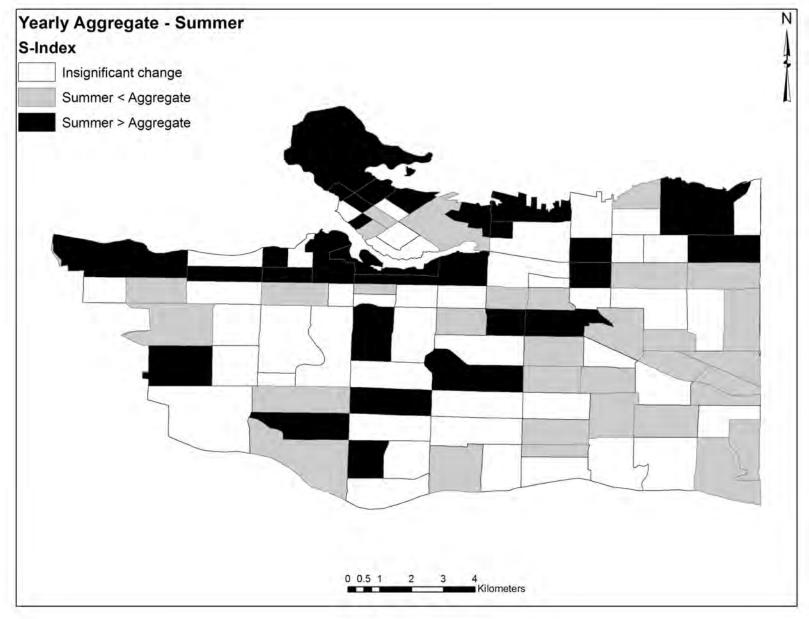


Vancouver, 2016 (800,000)

Data and measuring risk


Risk of what?

Risk for whom?


Risk also changes throughout the day, week, month, and year!

Assault

Theft from vehicle

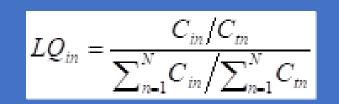
Changing spatial patterns in summer

So think carefully when you are measuring risk

- Who is being captured?
- Where were they?
- When were they there? (time of day, day of year)
- Is this relevant for your measurement?

How to measure crime risk?

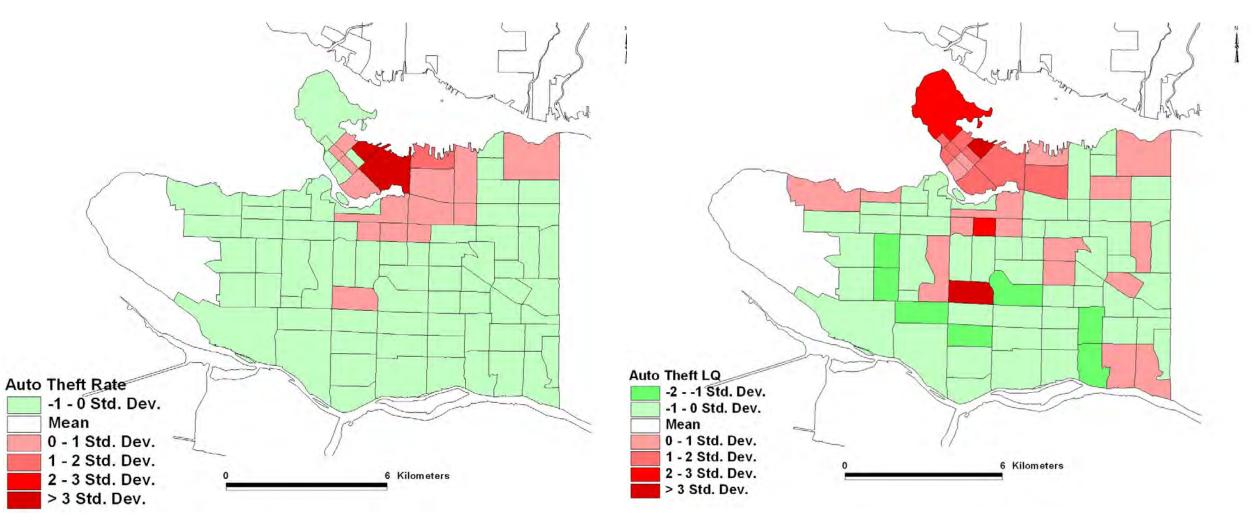
Crime counts

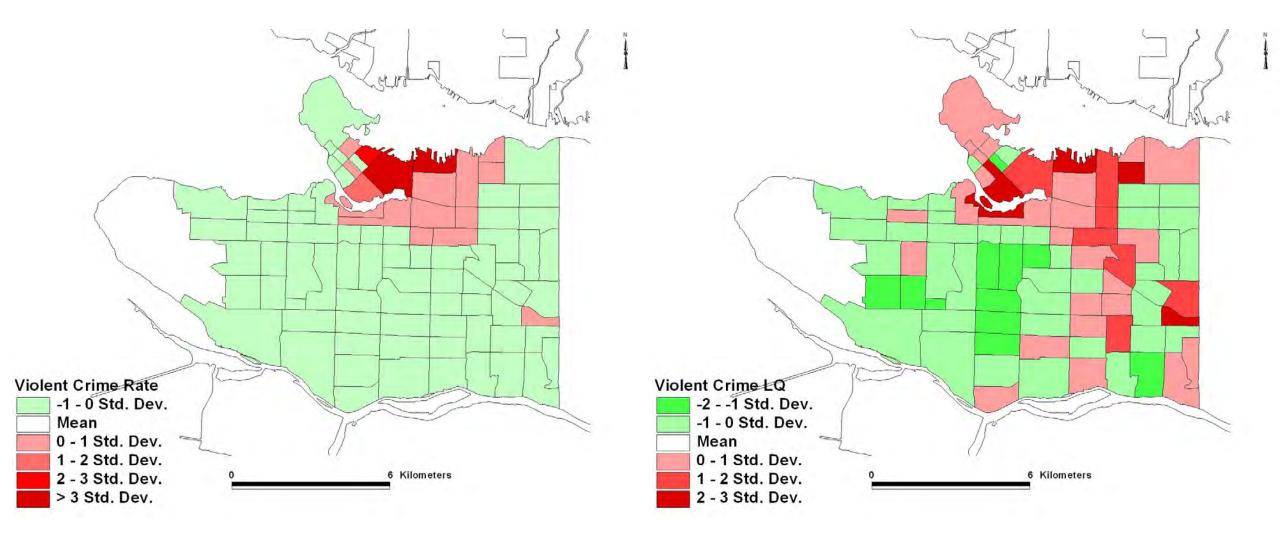

- Can be useful, but does not necessarily measure risk
- What is the time span for measuring those counts?

Crime rates

- Need to have the appropriate denominator
- We've seen what can happen when this changes

Location quotients


- Measures specialization
- Useful supplement to crime counts/rates


Location quotients

- C_{in} is the count of crime *i* in sub-region *n*
- C_{tn} is the count of all crimes in sub-region n
- *N* is the total number of sub-regions
- Very underrepresented areas, $0 \le LQ \le 0.70$;
- Moderately underrepresented areas, $0.70 < LQ \le 0.90$;
- Average represented areas, $0.90 < LQ \le 1.10$;
- Moderately overrepresented areas, $1.10 < LQ \le 1.30$;
- Very overrepresented areas, LQ > 1.30

Theft of vehicle

Violence

What does this all mean?

- There is so much potential for measuring risk with current data availability and methods
- Measuring risk spatial literally adds (at least) two dimensions to consider
- Need to think very carefully about what we measure
- Otherwise, we may impose more error or noise than signal
- This is the source of my current existential crisis in my research
 - Dark figure of crime and its impact on spatial patterns
 - What are we really measuring anywhere? Do people leave their characteristics behind?

Questions or comments?

References

Andresen, M.A., & Wong, J.M. (2021). The influence of micro-places on the spatial patterns of property crime in Vancouver, Canada. International Journal of Comparative and Applied Criminal Justice, in press.

Johnson, P., Andresen, M.A., & Malleson, N. (2021). Cell towers and the ambient population: A spatial analysis of disaggregated property crime. European Journal on Criminal Policy and Research, 27(3), 313 – 333

Hodgkinson, T., Saville, G., & Andresen, M.A. (2020). The diffusion of detriment: Tracking displacement using a city-wide mixed methods approach. British Journal of Criminology, 60(1), 198 – 218.

Andresen, M.A., Curman, A.S.N., & Linning, S.J. (2017). The trajectories of crime at places: Understanding the patterns of disaggregated crime types. *Journal of Quantitative Criminology*, 33(3), 427 – 449.

Andresen, M.A., & Malleson, N. (2015). Intra-week spatial-temporal patterns of crime. Crime Science, 4, Article 12.

Andresen, M.A., & Malleson, N. (2013). Spatial heterogeneity in crime analysis. In M. Leitner (Ed.), Crime modeling and mapping using geospatial technologies (pp. 3 – 23). New York, NY: Springer.

Andresen, M.A., & Malleson, N. (2013). Crime seasonality and its variations across space. Applied Geography, 43, 25 – 35.

Andresen, M.A., & Malleson, N. (2011). Testing the stability of crime patterns: Implications for theory and policy. *Journal of Research in Crime and Delinquency*, 48(1), 58 – 82.

Andresen, M.A. (2007). Location quotients, ambient populations, and the spatial analysis of crime in Vancouver, Canada. Environment and Planning A, 39(10), 2423 – 2444.

Other resources

Andresen, M.A. (2020). Environmental criminology: Evolution, theory, and practice (2nd ed.). New York, NY: Routledge.

Bruinsma, G.J.N., & Johnson, S.D. [Eds.] (2018). Oxford handbook of environmental criminology. New York, NY: Oxford University Press.

Mosher, C. J., Miethe, T. D., & Hart, T. C. (2010). *The mismeasure of crime*. Thousand Oaks, CA: Sage Publications.

Wortley, R., & Townsley, M. [Eds.] (2017). *Environmental criminology and crime analysis (2nd ed.)*. New York, NY: Routledge.

Wortley, R., Sidebottom, A., Tilley, N., & Laycock, G. [Eds.] (2019). *Routledge handbook of crime science*. New York, NY: Routledge.