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Figure 7. Density for each crime type (a) criminal damage, (b) theft and handling, and (c)
violence against the person; (1) match days, (2) comparison days (using the Natural
Jenks classification method).
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Example of the shortest network distance (SND) approach to estimating movement potential between "micro-

facilities” (pubs in this example) and the relevant stadium
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Table 4 Eftect of extra innings on assaults

Before and After Xfinity Live! Opens

Baseline extra innings Additional pre-2012 extra Observations
effect inmings e ffect
Extra innings*Home game*CEBP 0.04%** —005%*# 2020384
coefficient (0.0004) (D.0006)
Permutation p <0025 <0.022
(t stat) |-sided
Permutation p <.064 <0.047

(t stat) 2-sided

Menaker et al 2019
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Figure 1. Frequency of 11 types of charges reported within 800 m of two professional sports
venues in Cleveland, OH, January 2009 — February 2014. Charge frequency generally
increased on game days (table 1) although the effect was limited to specific charges (figure 2).
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The empirical cumulative distribution function (ECDF) for the two categories of crime (and boxplots for the end
times of matches and events)
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Context

° Case studies for specific locations (Country/State specific)
° Built environment

e  Type of fans

e  Transportation mode - infrastructure

° Cultural differences

° Event characteristics: rival teams, friendly game, championship, timeline
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Two baseball stadia in Chicago
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Burglary, Robbery, Vehicle Thetft,
Assault, Theft — Guaranteed Field
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Crime - Sporting Events — Social Media
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Social Media related features
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Game days

Control days
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Density maps Aston Villa stadium (a) amalgamated crimes, (b) geotagged tweets, (c)
violent tweets, and (d) football-related tweets
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Notes

® geometry of crime changes during sporting (home) game days

® place composition is highly connected with criminal behavior

® positive correlation between crimes and tweets on game days

® various sporting events at a venue -> various crime types increase

® similar temporal patterns

® shifted vs stable crime and social media hot spots — stadium proximity

® correlation crime-related tweets and attitudes on disorder.

Prediction

22



Systematic Review | Open Access | Published: 27 May 2020
A systematic review on spatial crime forecasting

Ourania Kounadi, Alina Ristea &=, Adelson Araujo Jr. & Michael Leitner

Crime Science 9, Article number: 7 (2020) | Cite this article
6523 Accesses | 7 Citations | 11 Altmetric | Metrics

Prediction: base + dynamic features in space-time

Gerber (2014)

(@) Predicted threat surface using only the (b) Predicted threat surface using the
KDE feature. KDE feature and the Twitter features.
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Prediction crime types
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Prediction game days vs control days
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Ristea et al (2018)

Mischief GWR -
coefficient of Anticipation tweets

Theft-from-vehicle Mischief Other theft N

% e Ve
¥

game days comparison days

Not Significant
game days (upper row) - I High-High Cluster
comparison days (lower row) High-Low Outlier
vy . Low-High Outlier
I Lov-Low Cluster Coeff. Anticipation
& & B -0
[ 0.00-0.03
0.03-0.05
[ 00s-0.10
Bl =00
23 4 0 05 1 2 3 4

| eeee—— ] ()]

3km area around Rogers Arena, Canucks team (hockey),

Vancouver, Canada Comparison
Mischief Adj. R? Game days days
GWR GWR

Tweets 0,83 0,78
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Data quality Prediction bias

data quality: social media bias (age, gender, semantics, study

area etc) and geo-location information;
crime data quality and geo-privacy aggregation;

data aggregation in space and time: Modifiable Areal Unit
Problem (MAUP) and temporal unit selection;

data sparsity: negative-positive ratio in prediction;
transferability of the results beyond the selected study areas;

different crime types in different countries.

It usually starts from the data input: missingness, not

representative, too skewed

If the training data includes inequalities, the algorithm can

keep propagating those inequalities

Location-based algorithms and individual targeting
algorithms are different, but they can both be biased based on

historical data

A diverse team is recommended to review the work.
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Notes

® proxy for crime occurrences -> potential value subset depending on analysis purpose; models tailored to the characteristic of a

crime type
® social media subsets - greater impact in prediction models
® statistically significant social media subsets (mostly crime-related tweets)
® tweets can be highly correlated with crimes, but the estimated influence varies across crime categories
® anincrease in social media when crime is stable can deviate the prediction

® strong spatial and temporal patterns -> historical data may be enough to predict immediate future
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New technologies, modern applications — adapting
theory?

Environmental criminology, criminology of place

Integration of new data: location data availability, social media Times are
Fans behavior EVZ?;;iler;% In
Stadia restructuring based on needs — new crimes emerging? every field.
More collaboration between fields of study and between researchers and practitioners
- EVERYBODY
Alina Ristea
Lecturer WELCOME
\ ONLINE
Thank yOU! seurty | Contact:
Science a.ristea@ucl.ac.uk

https://twitter.com/alina ristea
https://www.researchgate.net/profile/Alina-Ristea
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